
Performance Characterization of Decentralized Algorithms
for Replica Selection in Distributed Object Systems*

Ceryen Tan
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
1-617-253-1000

ctan@mit.edu

Kevin Mills
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
1-301-975-3618

kmills@nist.gov

ABSTRACT
Designers of distributed systems often rely on replicas for
increased robustness, scalability, and performance. Replicated
server architectures require some technique to select a target
replica for each client transaction. In this paper, we use simulation
to characterize performance (response time, selection error,
probability of server overload) for four common replica-selection
algorithms (random, greedy, partitioned, weighted) when applied
in a decentralized form to client queries in a distributed object
system deployed on a local network. We introduce two new
selection algorithms (balanced and balanced-partitioned) that give
improved performance over the more common algorithms. We
find the weighted algorithm performs best among the common
algorithms and the balanced algorithm performs best among all
those we considered. Our findings should help designers of
distributed object systems to make informed decisions when
choosing among available replica-selection algorithms.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Distributed Programming

General Terms
Algorithms, Design, Measurement, Performance

Keywords
Distributed Object Systems, Replica Selection.

1. INTRODUCTION
Designers of distributed systems often rely on replicas for
increased robustness, scalability, and performance. Replication
appears in a growing range of applications, such as web services
[1-15], distributed object systems [16-20], grid systems [21-22],
and content distribution networks [25-26]. Replication systems
require that each client transaction be assigned to a specific server
replica for processing. Selection (or assignment) algorithms aim
to minimize client response time, to balance server load, or to
achieve a combination. Typical commercial systems for server
replication [10-15] allow a designer to choose among several
alternate selection algorithms; however, the designer is given little
quantitative information to aid in choosing. At best, commercial
systems outline heuristics to differentiate among available

algorithms. Even academic papers [e.g., 1-9] do not give
comprehensive quantitative results.

In this paper, we aim to help designers understand quantitative
performance differences (and underlying causes) among the most
common algorithms (random, greedy, partitioned, and weighted)
for replica selection. We also introduce two new algorithms
(balanced and balanced-partitioned), and compare performance
with the more common algorithms. We consider three
performance characteristics: average client response time,
probability of selection error, and probability of server overload.

Section 2 surveys common selection algorithms typically
implemented in commercial systems and identifies some
algorithms proposed by researchers. Section 3 explains the design
of our experiment, including performance metrics. Section 4
presents simulation results, which are discussed in Section 5. We
conclude in Section 6.

2. REPLICA SELECTION
Our literature survey revealed two classes of replica-selection
algorithms. One class encompasses heuristically based, statically
configured algorithms. One static algorithm uses a round robin
approach [10,13,15] to rotate client transactions in turn among
replicas. A similar algorithm (using a uniform distribution)
randomly assigns [10,11,13] each client transaction to one of the
available replicas. These two algorithms assume that each replica
has similar processing power available and that the mix of
transaction types is congruent among the client population.
Absent these assumptions, the round robin and random algorithms
could perform poorly; however, no dynamic measurements are
needed for either algorithm. A third approach uses a proportional
algorithm [13,14], which distributes client transactions among
replicas in proportion to relative power ratings assigned by a
system administrator. This accounts for variation in processing
power when a server population consists of heterogeneous
platforms. Here, some information must be collected (off-line)
and encoded for use by the algorithm, which cannot adapt should
configuration information prove inaccurate or transient. Our
experiments investigate algorithms that dynamically adjust
assignment of client transactions based on measured conditions;
thus, we do not consider statically configured approaches. We do
simulate random assignment as a baseline case.
A second class of selection algorithms dynamically assigns client
transactions based on measured conditions. The most common
approach, greedy selection, [3,7,9-11,14,18, 23-25] assigns each
transaction to the replica estimated to give best performance

*This work is a contribution of the U.S. Government and is in the public
domain. This work identifies certain commercial products and standards
to describe our study adequately. The National Institute of Standards and
Technology neither recommends nor endorses these products or
standards as best available for the purpose.
WOSP’05, July 12–14, 2005, Palma, de Mallorca, Spain.
ACM 1-59593-087-6/05/0007

Startup delays cause
offset in Client
queries

Client issues next query 30 s after
receiving reply from previous queryClients

Clients and Directors
are paired

10 to 100*

in increments of 10
(*200 in selected cases)

60..75 s

NotesParameter ValueComponent

Each Server pushes
an update every 60 s,
but startup delays
cause update offsets

5 updates per minuteDirectors

Per Server - varied
every 60 s

Background Load is 25% to 99%
(i.e., capacity for queries is 75% to 1%)

Servers

Component
Workloads

Clients

Directors
Randomly selected
using a uniform
distribution

0…15 s
ServersComponent

Startup
Delays

Clients

Directors

Per run constant5Servers

Component
Quantities

Startup delays cause
offset in Client
queries

Client issues next query 30 s after
receiving reply from previous queryClients

Clients and Directors
are paired

10 to 100*

in increments of 10
(*200 in selected cases)

60..75 s

NotesParameter ValueComponent

Each Server pushes
an update every 60 s,
but startup delays
cause update offsets

5 updates per minuteDirectors

Per Server - varied
every 60 s

Background Load is 25% to 99%
(i.e., capacity for queries is 75% to 1%)

Servers

Component
Workloads

Clients

Directors
Randomly selected
using a uniform
distribution

0…15 s
ServersComponent

Startup
Delays

Clients

Directors

Per run constant5Servers

Component
Quantities

Table 1. Key Experiment Parameters

against some metric (different systems adopt different metrics).
Greedy selection exhibits a well-known undesirable behavior
where transactions oscillate in groups among available replicas.
To combat this “thundering herd” effect, some systems
incorporate a weighted algorithm [1,8,9,11,15] that first estimates
the performance of each replica against a selected metric and then
distributes client transactions in proportion to the likelihood that
each replica will provide acceptable performance. Some systems
first partition [1,2,5,15-17,20] replicas (based on estimated
performance against some metric) into two groups, available and
unavailable, and then, using greedy [2,15,20], weighted [1],
random [5,16], or multicast [17] selection, assign client
transactions among replicas in the available group. Multicast
selection sends a transaction to every replica in the available set
and uses the first returned result. Our experiment investigates the
performance of three, common dynamic replica-selection
algorithms: greedy, weighted, and partitioned (with random
assignment).
Most replica-selection systems that we examined adopt a
selection metric from one of two classes: client response time or
server load. Estimated response time, an ideal selection metric
from the client perspective, can be decomposed [17] as the sum of
communications delay (CD), server queuing delay (SQ), and server
processing time (SP). CD is important when clients access replicas
through the Internet. SQ is salient when a server is heavily loaded.
SP can dominate when transactions are computationally intensive.
From a server perspective, estimated server load is an ideal
selection metric. An alternative is estimated server latency (SL),
which can be decomposed as SQ + SP, yielding a convenient
relationship between response time and server load. When CD is
similar among all clients, SL provides a reasonable approximation
of relative response time. When highly variable, CD should be
measured independently. Our experiments use SL as an estimator
for client response times because we simulate a distributed object
system deployed on a local network, where clients experience
similar communication delays.

3. EXPERIMENT DESIGN
We designed an experiment to meet the following objective:
Given a set of r replicas deployed in a local network and queried
periodically by c clients, characterize and compare performance
of alternate selection algorithms. Our experiments exhibit the
following constraints: (1) client-director pairs are deployed in a
decentralized architecture (see Figure 1), (2) replicas are
implemented as Jini lookup services, (3) each replica executes on
a distinct, but similar, server, (4) each server is shared with other
applications, and (5) replica state is piggybacked on existing Jini
multicast announcements. Below, we provide details about the
experiment architecture, key parameters, our technique to vary
processor availability, selection metric and algorithms, and
performance metrics.

3.1 Experiment Architecture
Figure 1 outlines the experiment architecture, which implements
five replicas, each simulating a Jini [27] lookup service and a set
of unrelated applications. Using Jini discovery and registration
procedures all Jini services (not shown) register a service
description with each replica. Each client periodically queries its
local director (that uses some selection algorithm) to determine
the address of a replica, and then queries the selected replica for

service descriptions. Each client query is initiated 30 s after
receiving a reply to the previous query (the first query is issued
after a random startup delay). Each replica periodically (every 60
s) multicasts a Jini announcement extended to include two
elements of replica state: (1) the number (N) of pending queries
and (2) the current query processing rate (Q).

3.2 Key Experiment Parameters
Table 1 summarizes key parameters in three classes: component
quantities, startup delays, and workloads. In most instances, an
experiment considers an increasing population of clients from 10
to 100 (in increments of 10); however, the balanced and balanced-
partitioned algorithms require 200 clients to distinguish their
performance. The (uniformly distributed) random startup delays
for servers and directors are required by Jini, while higher startup
delay for clients allows Jini discovery and registration to complete
before initiating client queries. Each server reserves a minimum
of 1% of its processing capacity for client queries; however, as
much as 75% may be used for client queries, depending upon the
server’s background load, which we vary every 60 s.

3.3 Processor Availability
Table 2 exhibits parameters controlling variation in processor
availability. Each server reserves a minimum (BLMIN) and
maximum (BLMAX) percentage (25% to 99%) of its capacity to
process a background workload, which also defines a maximum
(CMAX) and minimum (CMIN) capacity (75% to 1%) each server
can devote to processing client queries. An unloaded server can
process QRATE = 4 queries/s (assuming a query can be processed in
QPTIME = 250 ms), which means that a loaded server’s query
processing rate may vary from a minimum (QMIN) of 0.04
queries/s to a maximum (QMAX) of 3 queries/s.

Director

Client

What Replica?

This Replica 5
Server

Replicas

Push N & Q
every 60 s

Query Replica (30 s after previous Reply)

Reply From Replica

Typically from 10 to 100 Client/Director Pairs*

(increments of 10)

*200 Client/Director Pairs in selected cases

Figure 1. Experiment Architecture

Table 2. Parameters Controlling Query Processing Rate

The maximum % that a Server’s query capacity can
increase between updates+20CI

Selected every 60 s from a discrete uniform distribution,
dC = discrete_uniform(CD, CI) . 0.01

–0.2 to +0.2dC

QRATE
. CMAX defines the rate at which a minimally loaded

Server can process queries3 queries/sQMAX

1/ QPTIME defines the rate (in queries per second) at
which an unloaded Server can process queries4 queries/sQRATE

QRATE
. CMIN defines the rate at which a maximally loaded

Server can process queries0.04 queries/sQMIN

Time to process a single query on an unloaded Server250 msQPTIME

Variation in
Server Query
Capacity

Bounds on
Server Query
Capacity

Bounds on
Server
Background
Load

Computed every 60 s, after selecting dC and computing
Ct (note that QMIN < Qt < QMAX)QRATE * CtQt

Computed every 60 s from new dC and previous C, but
constrained as follows: CMIN < Ct < CMAX

C t-1 + dCCt

The maximum % that a Server’s query capacity can
decrease between updates-20CD

1 - BLMAX defines the minimum % of each Server that can
be allocated to process Client queries0.01CMIN

1 - BLMIN defines the maximum % of each Server that can
be allocated to process Client queries0.75CMAX

Up to 99% of each Server may be allocated to process the
background workload0.99BLMAX

A minimum of 25% of each Server is reserved for
processing a background workload 0.25BLMIN

ExplanationValueParameter

The maximum % that a Server’s query capacity can
increase between updates+20CI

Selected every 60 s from a discrete uniform distribution,
dC = discrete_uniform(CD, CI) . 0.01

–0.2 to +0.2dC

QRATE
. CMAX defines the rate at which a minimally loaded

Server can process queries3 queries/sQMAX

1/ QPTIME defines the rate (in queries per second) at
which an unloaded Server can process queries4 queries/sQRATE

QRATE
. CMIN defines the rate at which a maximally loaded

Server can process queries0.04 queries/sQMIN

Time to process a single query on an unloaded Server250 msQPTIME

Variation in
Server Query
Capacity

Bounds on
Server Query
Capacity

Bounds on
Server
Background
Load

Computed every 60 s, after selecting dC and computing
Ct (note that QMIN < Qt < QMAX)QRATE * CtQt

Computed every 60 s from new dC and previous C, but
constrained as follows: CMIN < Ct < CMAX

C t-1 + dCCt

The maximum % that a Server’s query capacity can
decrease between updates-20CD

1 - BLMAX defines the minimum % of each Server that can
be allocated to process Client queries0.01CMIN

1 - BLMIN defines the maximum % of each Server that can
be allocated to process Client queries0.75CMAX

Up to 99% of each Server may be allocated to process the
background workload0.99BLMAX

A minimum of 25% of each Server is reserved for
processing a background workload 0.25BLMIN

ExplanationValueParameter

Every 60 s each server updates capacity (Ct) for processing
queries, subject to a constraint that capacity may not change by
more than 20% (CD and CI bound the maximum percentage of
decrease and increase, respectively) from the previous capacity
(Ct-1). The updated capacity determines the current query-
processing rate (Qt). Figure 2 displays a two-hour time series
depicting the relationship between changes in available capacity
(Ct) – left-hand y-axis and query-processing rate (Qt) – right-hand
y-axis.

We assume each query requires similar processing, i.e.,
transactions are homogeneous. We also assume query-processing
rate remains stable between announcements because the
schedulers in the server operating systems allocate portions of
processor time to specific processes and periodically (each minute
here) adjust that allocation. We further assume that
communication delays will be insignificant (and similar) because
we simulate deployment in a local network.

3.4 Selection Metric and Algorithms
Directors select replicas based on estimated latency for each
server r (SLr). SLr = Nr/Qr, where Nr and Qr are the number of
queries pending and the query processing rate, respectively,
received in the most recent announcement from server r. Table 3

defines key elements of the notation we use in the following
description of our replica-selection algorithms.

Our baseline algorithm is random selection, where a director
selects one of the known replicas, with each replica having an
equal selection probability. Let S be the set of known server
replicas, and n be the number of known server replicas. The
director selects server replica si, where i is an integer selected
uniformly on the interval [1..n]. The greedy algorithm requires a
director to select the replica si with the lowest estimated server
latency (Ni/Qi).

In the partitioned (random selection) algorithm, a director first
uses the state information cached for each replica to subset S into
a set (A) of a available replicas with estimated server latencies at
or below a threshold (TQAVAIL). The director then selects one replica
(randomly) from A. If no replicas qualify for set A, then the
director selects a replica randomly from set S.

In the weighted algorithm, a director assigns each replica a weight
based upon the inverse of estimated server latency and apportions
the unit interval according to the weights. The director then draws
a random real number uniformly distributed on the unit interval
and selects the replica assigned to the corresponding portion.

The greedy, partitioned, and weighted algorithms consider
estimated server latency (N/Q) as a unified metric; however,
replicas with similar server latency estimates could possess
different capacities to absorb work. This observation led us to
devise a balanced algorithm, where a director assigns each replica
a weight, based on the number of queries (di) required for its
server latency to reach the maximum estimated server latency
among all replicas. The director then apportions the unit interval
according to those weights and chooses a random real number
uniformly distributed on the unit interval, selecting the replica
assigned to the corresponding portion. Balanced selection entails
some probability that client transactions may be assigned to
overloaded replicas. For this reason, we devised a balanced-
partitioned variant, which first partitions replicas into two subsets,
available and unavailable, based on comparing estimated server
latency against TQAVAIL, and then uses the balanced algorithm to
select a replica from among the available subset. Where the
available subset is empty, selection is made using the balanced
algorithm.

Table 3. Notation for Defining Selection Algorithms

Number of additional queries needed for ith Server to match TQREFdi

Maximum estimated Server latencyTQREF

Set of Servers with additional queries needed to match TQREFD

Normalization factorK

Weight assigned to ith Serverwi

Set of Servers with weightsW

Number of available Serversa

Set of available ServersA

Server i is available when Ni / Qi < TQAVAILTQAVAIL

Number of queries/second that Server i can processQi

Number of queries backlogged at Server iNi

ith Serversi

Number of Serversn

Set of ServersS

ExplanationNotation

Number of additional queries needed for ith Server to match TQREFdi

Maximum estimated Server latencyTQREF

Set of Servers with additional queries needed to match TQREFD

Normalization factorK

Weight assigned to ith Serverwi

Set of Servers with weightsW

Number of available Serversa

Set of available ServersA

Server i is available when Ni / Qi < TQAVAILTQAVAIL

Number of queries/second that Server i can processQi

Number of queries backlogged at Server iNi

ith Serversi

Number of Serversn

Set of ServersS

ExplanationNotation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 19 28 37 46 55 64 73 82 91 100 109 118
Time (minutes)

C
t

0

0.5

1

1.5

2

2.5

3

3.5

Q
t

Ct

Qt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 19 28 37 46 55 64 73 82 91 100 109 118
Time (minutes)

C
t

0

0.5

1

1.5

2

2.5

3

3.5

Q
t

Ct

Qt

Figure 2. Variations in Ct causing Variations in Qt

0

30

60

90

120

10 20 30 40 50 60 70 80 90 100

Number of Clients

av
g R

T
(s

ec
on

ds
)

Random

Greedy

Partitioned

Weighted
0

30

60

90

120

10 20 30 40 50 60 70 80 90 100

Number of Clients

av
g R

T
(s

ec
on

ds
)

Random

Greedy

Partitioned

Weighted

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100
Number of Clients

pr
ob

SE

Random

Greedy

Partitioned

Weighted
0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100
Number of Clients

pr
ob

SE

Random

Greedy

Partitioned

Weighted

0.00

0.05

0.10

0.15

0.20

10 20 30 40 50 60 70 80 90 100
Number of Clients

pr
ob

SO

Random

Greedy

Partitioned

Weighted

0.00

0.05

0.10

0.15

0.20

10 20 30 40 50 60 70 80 90 100
Number of Clients

pr
ob

SO

Random

Greedy

Partitioned

Weighted

Figure 3(a). Average Client Response Time for
Common Selection Algorithms

Figure 3(c). Probability of Server Overload for
Common Selection Algorithms

Figure 3(b). Probability of Selection Error for
Common Selection Algorithms

3.5 Performance Metrics
To compare performance among selection algorithms, we define
three metrics: average client response time (avgRT), defined in
Table 4, and probability of selection error (probSE) and server
overload (probSO), defined in Table 5.

4. SIMULATION RESULTS
We implemented our experiment as an SLXTM [28] simulation of
Jini lookup servers, services, clients, and directors, executing a set
of runs that each considered an increasing population of clients,
each supported by a director using one of the selection algorithms
defined in Section 3.4. Each client in each run generated 1,000
queries, and each run was iterated 100 times; thus, each data point
observes c x 105 replica selections. Below, we report results in
two sets: the four common selection algorithms and the two
algorithms we invented.

Figures 3(a)-(c) plot performance (each graph displays a different
metric) under increasing load for the common selection
algorithms. Figures 4(a)-(c) plot performance for the balanced and
balanced-partitioned algorithms, where we increase beyond 100
clients in order to distinguish performance differences. Figures
4(a)-(c) also include for comparison weighted selection, the best
performing of the common algorithms.

5. DISCUSSION
Our results show that selecting replicas based on information
yields superior performance over random selection, which may
assign transactions to overloaded replicas; thus leading to higher

response times and server latencies. One exception appears: the
“thundering herd” effect induced by greedy selection causes
higher variance in server latency (not shown), as transactions
descend en masse upon the best performing replica, transforming
it to a poor performer. Bulk arrivals ensure that information on
which decisions were based becomes outdated quickly.

Table 5. Definition of Probability of Selection Error and
Probability of Server Overload

Probability of a selection error, computed as:probSE

Number of queries received by Server i when TQi > TQMAXNOi

Total number of queries received by Server iNTi

Probability a Server is overloaded, computed as:probSO

Total time during which Server i is upTUi

Total time during which TQi > TQMAX for Server i (observed
and updated upon arrival and departure of each query)

TOi

Server i is overloaded when TQi > TQMAX (here TQMAX = 50 s)TQMAX

Estimated time for Server i to clear its query backlog,
computed as Ni /Qi

TQi

Number of queries/second that Server i can processQi

Number of queries backlogged at Server iNi

Number of Serverss

DefinitionNotation

Probability of a selection error, computed as:probSE

Number of queries received by Server i when TQi > TQMAXNOi

Total number of queries received by Server iNTi

Probability a Server is overloaded, computed as:probSO

Total time during which Server i is upTUi

Total time during which TQi > TQMAX for Server i (observed
and updated upon arrival and departure of each query)

TOi

Server i is overloaded when TQi > TQMAX (here TQMAX = 50 s)TQMAX

Estimated time for Server i to clear its query backlog,
computed as Ni /Qi

TQi

Number of queries/second that Server i can processQi

Number of queries backlogged at Server iNi

Number of Serverss

DefinitionNotation

∑∑
==

s

i
Ui

s

i
Oi TT

11

/

∑∑
==

s

i
Ti

s

i
Oi NN

11

/

Time that Client i received a reply to its jth querytri,j

Number of queries sent by Client iqi

Number of Clientsc

DefinitionNotation

Time that Client i issued its jth querytqi,j

Average response time, computed as: avgRT

Time that Client i received a reply to its jth querytri,j

Number of queries sent by Client iqi

Number of Clientsc

DefinitionNotation

Time that Client i issued its jth querytqi,j

Average response time, computed as: avgRT
∑∑∑
== =

−
c

k
kji

c

i

q

j
ji qtqtr

i

1
,

1 1
, /)(

Table 4. Definition of Average Client Response Time

Partitioning replicas into two sets (based on server latency) and
then selecting randomly among the less loaded set, provides
general improvement over greedy selection on all metrics.
Further, the advantage of partitioned selection increases with
client load. Spreading transactions evenly among replicas likely
to provide good performance does not rapidly push one particular
replica into overload. The general advantage of partitioned
(random) over greedy selection exhibits one exception. Below 50
clients, servers have higher probability of being overloaded with
partitioned (random) selection because the greedy algorithm
assigns work in series – replica by replica – causing the number
of overloaded servers to increase more slowly. Once all replicas
reach saturation, the bulk arrival process of greedy selection
creates larger backlogs, while partitioned selection spreads
arrivals more evenly, allowing servers to spend less time in
overload.
Among the common algorithms, weighted selection provides the
best performance on all metrics. Weighted selection adapts to
changes in replica state without inducing rapid or large
fluctuations. Greedy selection stimulates large changes in
workload, pushing a selected replica away from the state that led
to its selection. The partitioned algorithm induces cyclic
oscillation in replica workload, but at a somewhat slower
frequency than greedy selection. Weighted selection tends mainly
to react to changes in replica state, while the greedy and
partitioned algorithms induce feedback that alters the state to
which they are reacting. This difference leads weighted selection
to exhibit more stable and desirable performance.
The balanced algorithm shares the reactive nature of weighted
selection but improves performance for two reasons. First,
balanced selection assigns more transactions to replicas with
greater available processing capacity. Second, using the replica
with the largest estimated server latency as the goal state reduces
pressure for upward movement in system-wide server latency, and
tends to reinforce downward movement. These reasons also
explain why the balanced-partitioned algorithm performs well, up
to a point. As the client population surpasses 100, performance
degrades for the balanced-partitioned algorithm because the set of
replicas available diminishes, forcing fewer replicas to receive
more transactions. After load reaches saturation, partitioning
creates a bulk-arrival process that pushes replicas into overload
for longer periods. These results indicate that adding a
partitioning step could diminish performance for an otherwise
good selection algorithm.

6. CONCLUSIONS
We used simulation to characterize performance (response time,
selection error, probability of server overload) for four common
replica-selection algorithms (random, greedy, partitioned,
weighted) when applied in a decentralized form to client queries
in a distributed object system deployed on a local network. We
introduced two new selection algorithms (balanced and balanced-
partitioned) that give improved performance over the more
common algorithms. We found that weighted selection performs
best among the common algorithms and that balanced selection
performs best overall. We explained why greedy and random
algorithms should be avoided. We also provided evidence that
preceding selection with a partitioning step can weaken an
otherwise good selection algorithm.

0.00

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

pr
ob

SO

Balanced

Balanced-Partitioned

Weighted

0.00

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

pr
ob

SO

Balanced

Balanced-Partitioned

Weighted

0.00

0.01

0.02

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

pr
ob

SE

W eighted

Balanced-Partitioned

Balanced

0.00

0.01

0.02

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

pr
ob

SE

W eighted

Balanced-Partitioned

Balanced

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

av
g R

T
 (s

ec
on

ds
)

W eighted

Balanced-Partitioned

Balanced

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

av
g R

T
 (s

ec
on

ds
)

W eighted

Balanced-Partitioned

Balanced

Figure 4(a). Average Client Response Time for New
(and Weighted) Selection Algorithms

Figure 4(c). Probability of Server Overload for New
(and Weighted) Selection Algorithms

Figure 4(b). Probability of Selection Error for New
(and Weighted) Selection Algorithms

7. REFERENCES
[1] Rabinovich, M., Xiao, Z., and Aggarwal, A. Computing on

the Edge: A Platform for Replicating Internet Applications.
In Proceedings of the 8th International Workshop on Web
Content Caching and Distribution, (Hawthorne, New York,
September 29 through October 1, 2003).

[2] Lewontin, S. and Martin, E. Client Side Load Balancing for
the Web. In Proceedings of 6th International World Wide
Web Conference. (Santa Clara, California, April 7-11, 1997).

[3] Vingralek, R., Breitbart, Y., Sayal, M., and Scheuermann, P.
Web++: A System For Fast and Reliable Web Service. In
Proceedings of the USENIX Annual Technical Conference.
(Monterey, California, June 6-11, 1999). USENIX
Association.

[4] Sayal, M., Scheuermann, P., and Vingralek, R. Content
Replication in Web++. In Proceedings 2nd IEEE
International Symposium on Network Computing and
Applications. (Cambridge, Massachusetts, April 16 - 18,
2003). IEEE, p. 33.

[5] Fei, Z., Bhattacharjee, S., Zegura, E., and Ammar, M. A
Novel Server Selection Technique for Improving Response
Time of a Replicated Service. In Proceedings IEEE
INFOCOM 1998. (San Francisco, California, March 1998).
IEEE, pp. 783-791.

[6] Crovella, M. and Carter, R. Dynamic Server Selection in the
Internet. In Proceedings of the 3rd IEEE Workshop on the
Architecture and Implementation of High Performance
Communication Subsystems. (Mystic, Connecticut, August
1995).

[7] Carter, R. and Corvella, M. Server Selection using Dynamic
Path Characterization in Wide-Area Networks. In
Proceedings of INFOCOM 1997. (Kobe, Japan, April 1997).

[8] Cardellini, V., Colajanni, M. and Yu, P. Request Redirection
Algorithms for Distributed Web Systems. IEEE Transactions
on Parallel and Distributed Systems, Vol. 14, No. 4, April
2003, pp. 355-368.

[9] Sayal, M., Breitbart, Y., Scheuermann, P. and Vingralek, R.
Selection Algorithms for Replicated Web Servers. In
Proceedings of the Workshop on Internet Server
Performance. (Madison, Wisconsin, June 1998).

[10] Connect Control Datasheet. Check Point Software
Technologies Ltd. 2003.

[11] Load Balancing System, Chapter 6 in Intel Solutions
Manual, Intel Corporation, pp. 49-67.

[12] Farrell, R. Review of Web server load balancers. Network
World, September 27, 1997.

[13] Load Balancing in a Cluster, WebLogic Server 7.0, bea.
[14] Configuring application server load balancing, Tarantella.
[15] Server Load Balancing. TechBrief from Extreme Networks.
[16] Othman, O., O’Ryan, C. and Schmidt, D. The Design and

Performance of an Adaptive CORBA Load Balancing
Service. To appear in the “online” edition of the Distributed
Systems Engineering Journal. February 2001.

[17] Krishnamurthy, S. Sanders, W., and Cukier, M. Performance
Evaluation of a Probabilistic Replica Selection Algorithm.
In Proceedings of the Seventh IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems. (San
Diego, California January 07 - 09, 2002).

[18] Shen, K., Yang, T., and Chu, L. Cluster Load Balancing for
Fine-Grained Network Services. In Proceedings of the
International Parallel and Distributed Processing
Symposium (IPDPS). (Fort Lauderdale, Florida April 15-19,
2002).

[19] Waldvogel, M., Hurley, P., and Bauer, D. Dynamic Replica
Management in Distributed Hash Tables. IBM Research
Report RZ-3502, July 2003.

[20] Ferdean, C. and Makpangou, M. A Scalable Replica
Selection Strategy based on Flexible Contracts. In
Proceedings of the Third IEEE Workshop on Internet
Applications. (San Jose, California, June 23 - 24, 2003).

[21] Vazhkudai, S. Tuecke, S., and Foster, I. Replica Selection in
the Globus Data Grid. In Proceedings of the 1st International
Symposium on Cluster Computing and the Grid. (Brisbane,
Australia, May 15-18, 2001).

[22] Zhao, Y. and Hu, Y. GRESS – a Grid Replica Selection
Service. In Proceedings of the 15th International Conference
Parallel And Distributed Computing and Systems. (Marina
Del Ray, California, November 3-5, 2003).

[23] Fu, Z. and Venkatasubramanian, N. Combined Path and
Server Selection in Dynamic Multimedia Environments. In
Proceedings of the 7th ACM International Conference on
Multimedia (Part 1). (Orlando, Florida, 1999). ACM pp. 469-
472.

[24] Guo, M. Ammar, M. Zegura, E. Selecting among Replicated
Batching Video-on-Demand Servers. In Proceedings of the
12th International Workshop on Network and Operating
System Support for Digital Audio and Video. (Miami,
Florida, May 12-14, 2002).

[25] Huang, C. and Abdelzaher, T. Towards Content Distribution
Networks with Latency Guarantees. In Proceedings of the
12th International Workshop on Quality of Service.
(Montreal, Canada, June 7-9, 2004).

[26] Krishnamurthy, B. Wills, C. and Zhang, Y. On the Use and
Performance of Content Distribution Networks. In
Proceedings of the ACM SIGCOMM Internet Measurement
Workshop. (San Francisco, California, November 1-2, 2001).

[27] Arnold, K. et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is available from Sun.

[28] Henriksen, J. An Introduction to SLXTM. In Proceedings of
the 1997 Winter Simulation Conference. (Atlanta, Georgia,
December 7-10, 1997), pp. 559-566.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

